Test Form A

Chapter P

Name _____

Date _____

Class _____

Section ____

1. Find all intercepts of the graph of $y = \frac{x+2}{x-3}$.

$$(3)$$
 $(-2,0)$

(b)
$$(-2,0),(3,0)$$

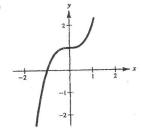
(c)
$$\left(0, \frac{2}{3}\right)$$
, $(3, 0)$

(d)
$$(-2, 0), (0, -\frac{2}{3})$$

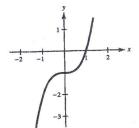
(e) None of these

- 2. Determine if the graph of $y = \frac{x}{x^2 4}$ is symmetrical with respect to the x-axis, the y-axis, or the origin.
 - (a) About the x-axis
- (b) About the y-axis
- (c) About the origin

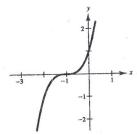
- (d) All of these
- (e) None of these
- 3. Find all points of intersection of the graphs of $x^2 2x y = 6$ and x y = -4.

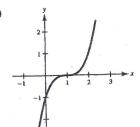

(a)
$$(0, -6), (0, 4)$$

(c)
$$(5, 9), (-2, 2)$$


(d)
$$(-5, -1), (2, 6)$$

4. Which of the following is a sketch of the graph of the function $y = x^3 + 1$?




(b)

(c)

(d)

- (e) None of these
- 5. Find an equation for the line passing through the point (4, -1) and perpendicular to the line 2x 3y = 3.

(a)
$$y = \frac{2}{3}x - 1$$

(b)
$$3x + 2y + 2 = 0$$

(c)
$$2x + 3y = 10$$

(d)
$$3x + 2y = 10$$

- **6.** Find the domain of $f(x) = \frac{1}{\sqrt{3-2x}}$
 - (a) $\left(-\infty, \frac{3}{2}\right)$
- (b) $\left[\frac{3}{2},\infty\right)$

(c) $\left(\frac{3}{2}, \infty\right)$

- (d) $\left(-\infty, \frac{3}{2}\right) \cup \left(\frac{3}{2}, \infty\right)$
- (e) None of these
- 7. Find $f(x + \Delta x)$ for $f(x) = x^3 + 1$.
 - (a) $x^3 + 1 + \Delta x$

(b) $x^3 + 3x^2(\Delta x) + 3x(\Delta x)^2 + (\Delta x)^3 + 1$

(c) $x^3 + (\Delta x)^3 + 1$

(d) $\Delta^3 x^6 + 1$

- (e) None of these
- 8. If $f(x) = \frac{1}{\sqrt{x}}$ and $g(x) = 1 x^2$, find f(g(x)).
 - $(a) \ \frac{1-x^2}{\sqrt{x}}$

(b) $\frac{1}{\sqrt{1-x^2}}$

(c) $1 - \frac{1}{x}$

- (d) $\frac{1}{\sqrt{x}} + 1 x^2$
- (e) None of these
- 9. If the point $\left(-3,\frac{1}{2}\right)$ lies on the graph of the equation 2x + ky = -11, find the value of k.
 - (a) $-\frac{5}{2}$

(b) -34

(c) $-\frac{17}{2}$

(d) -10

- (e) None of these
- 10. Which of the following equations expresses y as a function of x?
 - (a) 3y + 2x 9 = 17
- (b) $2x^2y + x = 4y$
- (c) Both a and b

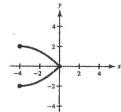
- (d) Neither a nor b
- (e) $3y^2 x^2 = 5$
- 11. Given $f(x) = x^2 3x + 4$, find f(x + 2) f(2).
 - (a) $x^2 3x + 4$
- (b) $x^2 + x$

(c) $x^2 + x - 8$

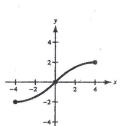
- (d) $x^2 3x 4$
- (e) None of these
- 12. Determine which function is neither even nor odd.
 - (a) $f(x) = \tan x$
- (b) $f(x) = 3x^5 + 5x^3 + 1$
- (c) $f(x) = \frac{3}{x^2}$

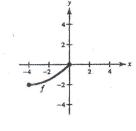
- (d) $f(x) = \sqrt{x^2 + 1}$
- (e) Both a and b
- 13. Find the point that lies on the line determined by the points (1, -2) and (-3, 1).
 - (a) (0,0)

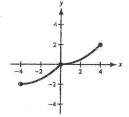
(b) (5, 1)


(c) (4, -6)

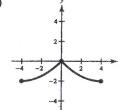
(d) (5, -5)

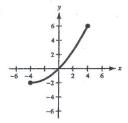

(e) (-2,0)

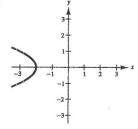

14. The domain of the function f shown in the figure is $-4 \le x \le 4$. Choose the complete graph of f if f is even.

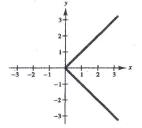


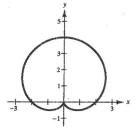
(b)

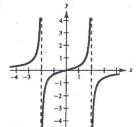



(3)


(d)


(e)


- 15. Describe the transformation needed to sketch the graph of $y = \frac{1}{x-2}$ using the graph of $f(x) = \frac{1}{x}$.
 - (a) Shift f(x) two units to the right.
 - (b) Shift f(x) two units to the left.
 - (c) Shift f(x) two units upward.
 - (d) Shift f(x) two units downward.
 - (e) Reflect f(x) about the x-axis.
- 16. Use the vertical line test to determine which of the following graphs represent y as a function of x.
 - (a)


(b)

(c)

(d)

- 17. Let $f(x) = \begin{cases} \frac{1}{x} & x < 0 \\ 2x + 1, & x \ge 0 \end{cases}$. Find f(3).
 - (a) $\frac{1}{3}$

(b)

(c) 7

(d) Undefined

- (e) $\frac{22}{3}$
- 18. The dollar value of a product in 1998 is \$1430. The value of the product is expected to increase \$85 per year for the next 5 years. Write a linear equation that gives the dollar value V of the product in terms of the year t. (Let t = 8 represent 1998.)
 - (a) V = 1430 + 83(t 8)
- (b) V = 83 + 1430t
- (c) V = 1430 + 83t

- (d) V = 83 + 1430(t + 8)
- (e) V = 1430 + 83(t + 8)
- 19. During the first and second quarters of the year, a business had sales of \$150,000 and \$185,000, respectively. If the growth of sales follows a linear pattern, what will sales be during the fourth quarter?
 - (a) \$220,000

(b) \$235,000

(c) \$335,000

(d) \$255,000

- (e) None of these
- 20. In order for a company to realize a profit in the manufacture and sale of a certain item, the revenue, R, for selling x items must be greater than the cost, C, of producing x items. If R = 79.99x and C = 61x + 1050, for what values of x will this product return a profit?
 - (a) $x \ge 55$

(b) $x \ge 8$

(c) $x \ge 18$

(d) $x \ge 56$

Test Form B

Chapter P

Name _____ Date ____

Class _____ Section ____

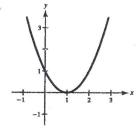
- 1. Find all intercepts of the graph of $y = \frac{x-1}{x+3}$
 - (a) $(1,0), (0,-\frac{1}{3})$
- (b) (1, 0)

(c) (-3, 0), (1, 0)

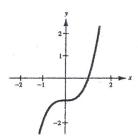
- (d) $(-3, 0), (0, -\frac{1}{3})$
- (e) None of these
- 2. Determine if the graph of $y = \frac{x^2}{x^2 4}$ is symmetrical with respect to the x-axis, the y-axis, or the origin.
 - (a) About the x-axis
- (b) About the y-axis
- (c) About the origin

- (d) All of these
- (e) None of these
- 3. Find all points of intersection of the graphs of $x^2 + 3x y = 3$ and x + y = 2.

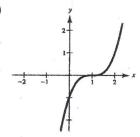
(a)
$$(5, -3), (1, 1)$$

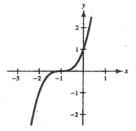

(b)
$$(0, -3), (0, 2)$$

(c)
$$(-5, -3), (1, 1)$$


(d)
$$(-5,7),(1,1)$$

4. Which of the following is a sketch of the graph of the function $y = (x - 1)^3$?


(a)


(b)

(c)

(d)

(c) 3x - 2y = -5

(d) $y = \frac{2}{3}x - 1$

(e) None of these

6. Find the domain of $f(x) = \frac{1}{\sqrt{3+2x}}$.

(a)
$$\left(-\infty, -\frac{3}{2}\right)$$

(b) $\left[-\frac{3}{2},\infty\right)$

(c) $\left(-\frac{3}{2},\infty\right)$

(d)
$$\left(-\infty, -\frac{3}{2}\right) \cup \left(-\frac{3}{2}, \infty\right)$$
 (e) None of these

7. Find $f(x + \Delta x)$ for $f(x) = x^2 - 2x - 3$.

(a)
$$x^2 - x - 3 + \Delta x$$

(b) $x^2 + 2x(\Delta x) + (\Delta x)^2 - 2x - 2\Delta x - 3$

(c)
$$x^2 - 2x - 3 + \Delta x$$

(d) 5

(e) None of these

8. If $f(x) = 1 - x^2$ and $g(x) = \frac{1}{\sqrt{x}}$, find f(g(x)).

(a)
$$\frac{1-x^2}{\sqrt{x}}$$

(b)
$$\frac{1}{\sqrt{1-x^2}}$$

(c)
$$1 - \frac{1}{x}$$

(d)
$$\frac{1}{\sqrt{x}} + 1 - x^2$$

(e) None of these

9. If the point (-1, 1) lies on the graph of the equation $kx^2 - xy + y^2 = 5$, find the value of k.

(a) 7

(b) 3

(c) 5

(d) -3

(e) None of these

10. In which of the following equations is y a function of x?

(a)
$$2x + 3y - 1 = 0$$

(b)
$$x^2 + 3y^2 = 7$$

(c)
$$2x^2y = 7$$

(d) Both a and b

(e) Both a and c

11. Given f(x) = |x - 3| - 5, find f(1) - f(5).

(a) 0

(b) -4

(c) 14

(d) -14

(e) None of these

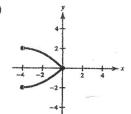
12. Determine the even function.

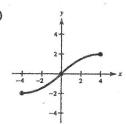
(a)
$$f(x) = \sin x$$

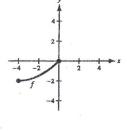
(b)
$$f(x) = \frac{x^3}{x^2 + 1}$$

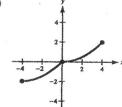
(c)
$$f(x) = 3x^4 + 5x^2 - 1$$

(d)
$$f(x) = \sqrt{x^3 + 1}$$

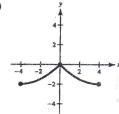

13. Find the point that lies on the line determined by the points (1, -3) and (-2, -4).

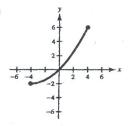

(b)
$$(-1, -1)$$


14. The domain of the function f shown in the figure is $-4 \le x \le 4$. Choose the complete graph of f if f is odd.



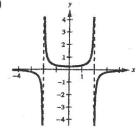
(b)



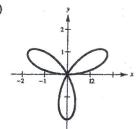


(d)

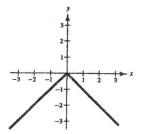
(e)

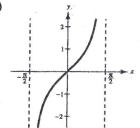


- 15. Describe the transformation needed to sketch the graph of $y = \frac{1}{x} + 2$ using the graph of $f(x) = \frac{1}{x}$.
 - (a) Shift f(x) two units to the right.
- (b) Shift f(x) two units to the left.


(c) Shift f(x) two units upward.

- (d) Shift f(x) two units downward.
- (e) Reflect f(x) about the x-axis.
- 16. Use the vertical line test to determine which of the following graphs does not represent y as a function of x.




(b)

(c)

(d)

(e) Both a and d

- 17. Let $f(x) = \begin{cases} x^2 5, & x < 2 \\ 3x + 1, & x \ge 2 \end{cases}$. Find f(1).
 - (a) -4

(c) 4

(d) 2

- (e) 0
- 18. The dollar value of a product in 1998 is \$78. The value of the product is expected to decrease \$5.75 per year for the next 5 years. Write a linear equation that gives the dollar value V of the product in terms of the year t. (Let t = 8 represent 1998.)

(a)
$$V = 78 - 5.75t$$

(b)
$$V = 78 + 5.75t$$

(c)
$$V = 78 + 5.75(t - 8)$$

(d)
$$V = 78 - 5.75(t - 8)$$
 (e) $V = 5.75 - 78(t - 8)$

(e)
$$V = 5.75 - 78(t - 8)$$

- 19. A business had annual retail sales of \$124,000 in 1993 and \$211,000 in 1996. Assuming that the annual increase in sales follows a linear pattern, predict the retail for 2001.
 - (a) \$356,000

(b) \$435,000

(c) \$646,000

(d) \$298,000

- (e) \$327,000
- 20. In order for a company to realize a profit in the manufacture and sale of a certain item, the revenue, R, for selling x items must be greater than the cost, C, of producing x items. If R = 69.99x and C = 59x + 850, for what values of x will this product return a profit?
 - (a) $x \ge 78$

(b) $x \ge 15$

(c) $x \ge 85$

(d) $x \ge 13$

DIM

Test Form A

Chapter P

Name _____ Date ____

Class _____ Section ____

1. Find all intercepts of the graph of $y = \frac{x+2}{x-3}$.

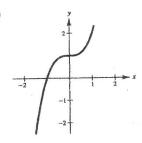
(b)
$$(-2,0),(3,0)$$

(c)
$$\left(0, \frac{2}{3}\right)$$
, $(3, 0)$

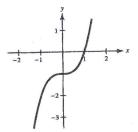
(d)
$$(-2, 0), (0, -\frac{2}{3})$$

2. Determine if the graph of $y = \frac{x}{x^2 - 4}$ is symmetrical with respect to the x-axis, the y-axis, or the origin.

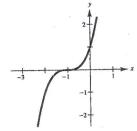
3. Find all points of intersection of the graphs of $x^2 - 2x - y = 6$ and x - y = -4.

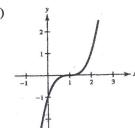

(a)
$$(0, -6), (0, 4)$$

(c)
$$(5, 9), (-2, 2)$$


(d)
$$(-5, -1), (2, 6)$$

4. Which of the following is a sketch of the graph of the function $y = x^3 + 1$?


(a)


(b)

(c)

(d)

- (e) None of these
- 5. Find an equation for the line passing through the point (4, -1) and perpendicular to the line 2x 3y = 3.

(a)
$$y = \frac{2}{3}x - 1$$

(b)
$$3x + 2y + 2 = 0$$

(c)
$$2x + 3y = 10$$

(d)
$$3x + 2y = 10$$

- (a) $\left(-\infty, \frac{3}{2}\right)$
 - (b) $\left[\frac{3}{2},\infty\right)$

(c) $\left(\frac{3}{2}, \infty\right)$

- (d) $\left(-\infty, \frac{3}{2}\right) \cup \left(\frac{3}{2}, \infty\right)$
- (e) None of these

7. Find $f(x + \Delta x)$ for $f(x) = x^3 + 1$.

(a) $x^3 + 1 + \Delta x$

(b) $x^3 + 3x^2(\Delta x) + 3x(\Delta x)^2 + (\Delta x)^3 + 1$

(c) $x^3 + (\Delta x)^3 + 1$

(d) $\Delta^3 x^6 + 1$

(e) None of these

8. If $f(x) = \frac{1}{\sqrt{x}}$ and $g(x) = 1 - x^2$, find f(g(x)).

(a) $\frac{1-x^2}{\sqrt{x}}$

(b) $\frac{1}{\sqrt{1-x^2}}$

(c) $1 - \frac{1}{x}$

- (d) $\frac{1}{\sqrt{x}} + 1 x^2$
- (e) None of these

9. If the point $\left(-3,\frac{1}{2}\right)$ lies on the graph of the equation 2x + ky = -11, find the value of k.

(a) $-\frac{5}{2}$

(b) -34

(c) $-\frac{17}{2}$

(d) -10

(e) None of these

10. Which of the following equations expresses y as a function of x?

- (a) 3y + 2x 9 = 17
- (b) $2x^2y + x = 4y$
- (c) Both a and b

- (d) Neither a nor b
- (e) $3y^2 x^2 = 5$

11. Given $f(x) = x^2 - 3x + 4$, find f(x + 2) - f(2).

- (a) $x^2 3x + 4$
- (b) $x^2 + x$

(c) $x^2 + x - 8$

- (d) $x^2 3x 4$
- (e) None of these

12. Determine which function is neither even nor odd.

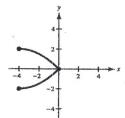
- (a) $f(x) = \tan x$
- (b) $f(x) = 3x^5 + 5x^3 + 1$
- (c) $f(x) = \frac{3}{x^2}$

- (d) $f(x) = \sqrt{x^2 + 1}$
- (e) Both a and b

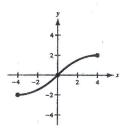
13. Find the point that lies on the line determined by the points (1, -2) and (-3, 1).

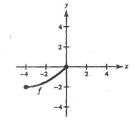
(a) (0,0)

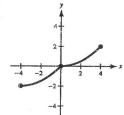
(b) (5, 1)


(c) (4, -6)

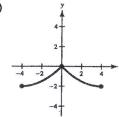
(d) (5, -5)

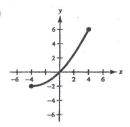

(e) (-2, 0)


14. The domain of the function f shown in the figure is $-4 \le x \le 4$. Choose the complete graph of f if f is even.



(b)

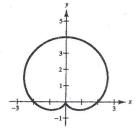


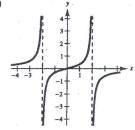

151

(d)



(e)


- 15. Describe the transformation needed to sketch the graph of $y = \frac{1}{x-2}$ using the graph of $f(x) = \frac{1}{x}$.
 - (a) Shift f(x) two units to the right.
 - (b) Shift f(x) two units to the left.
 - (c) Shift f(x) two units upward.
 - (d) Shift f(x) two units downward.
 - (e) Reflect f(x) about the x-axis.
- 16. Use the vertical line test to determine which of the following graphs represent y as a function of x.



(c)

(d)

- 17. Let $f(x) = \begin{cases} \frac{1}{x} & x < 0 \\ 2x + 1, & x \ge 0 \end{cases}$. Find f(3).

(b) 1

(c) 7

(d) Undefined

- 18. The dollar value of a product in 1998 is \$1430. The value of the product is expected to increase \$85 per year for the next 5 years. Write a linear equation that gives the dollar value V of the product in terms of the year t. (Let t = 8 represent 1998.)
 - (a) V = 1430 + 83(t 8)
- (b) V = 83 + 1430t
- (c) V = 1430 + 83t

- (d) V = 83 + 1430(t + 8)
- (e) V = 1430 + 83(t + 8)
- 19. During the first and second quarters of the year, a business had sales of \$150,000 and \$185,000, respectively. If the growth of sales follows a linear pattern, what will sales be during the fourth quarter?
 - (a) \$220,000

(b) \$235,000

(c) \$335,000

(d) \$255,000

- (e) None of these
- 20. In order for a company to realize a profit in the manufacture and sale of a certain item, the revenue, R, for selling x items must be greater than the cost, C, of producing x items. If R = 79.99x and C = 61x + 1050, for what values of x will this product return a profit?
 - (a) $x \ge 55$

(b) $x \ge 8$

(c) $x \ge 18$

(d) $x \ge 56$

Test Form B

Chapter P

Name

Date ____

Class

Section

1. Find all intercepts of the graph of $y = \frac{x-1}{x+3}$.

- (a) $(1,0), (0,-\frac{1}{3})$
- (b) (1,0)

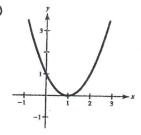
(c) (-3, 0), (1, 0)

- (d) $(-3, 0), (0, -\frac{1}{3})$
- (e) None of these

2. Determine if the graph of $y = \frac{x^2}{x^2 - 4}$ is symmetrical with respect to the x-axis, the y-axis, or the origin.

- (a) About the x-axis
- (b) About the y-axis
- (c) About the origin

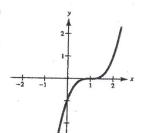
- (d) All of these
- (e) None of these

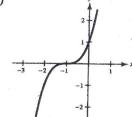

3. Find all points of intersection of the graphs of $x^2 + 3x - y = 3$ and x + y = 2.

- (a) (5, -3), (1, 1)
- (b) (0, -3), (0, 2)
- (c) (-5, -3), (1, 1)

- (d) (-5, 7), (1, 1)
- (e) None of these

4. Which of the following is a sketch of the graph of the function $y = (x - 1)^3$?


(a)


Ch

(c)

(d)

- 5. Find an equation for the line passing through the point (4, -1) and parallel to the line 2x 3y = 3.
 - (a) 2x 3y = 11
- (b) 2x 3y = -5
- (c) 3x 2y = -5

(d) $y = \frac{2}{3}x - 1$

- (e) None of these
- **6.** Find the domain of $f(x) = \frac{1}{\sqrt{3+2x}}$
 - (a) $\left(-\infty, -\frac{3}{2}\right)$
- (b) $\left[-\frac{3}{2},\infty\right)$

- (c) $\left(-\frac{3}{2},\infty\right)$
- (d) $\left(-\infty, -\frac{3}{2}\right) \cup \left(-\frac{3}{2}, \infty\right)$ (e) None of these
- 7. Find $f(x + \Delta x)$ for $f(x) = x^2 2x 3$.
 - (a) $x^2 x 3 + \Delta x$

(b) $x^2 + 2x(\Delta x) + (\Delta x)^2 - 2x - 2\Delta x - 3$

(c) $x^2 - 2x - 3 + \Delta x$

(d) 5

- (e) None of these
- **8.** If $f(x) = 1 x^2$ and $g(x) = \frac{1}{\sqrt{x}}$, find f(g(x)).

$$(a) \ \frac{1-x^2}{\sqrt{x}}$$

(b)
$$\frac{1}{\sqrt{1-x^2}}$$

(c)
$$1 - \frac{1}{x}$$

(d)
$$\frac{1}{\sqrt{x}} + 1 - x^2$$

- (e) None of these
- 9. If the point (-1, 1) lies on the graph of the equation $kx^2 xy + y^2 = 5$, find the value of k.
 - (a) 7

(c) 5

(d) -3

- (e) None of these
- 10. In which of the following equations is y a function of x?

(a)
$$2x + 3y - 1 = 0$$

(b)
$$x^2 + 3y^2 = 7$$

(c)
$$2x^2y = 7$$

- (d) Both a and b
- (e) Both a and c
- 11. Given f(x) = |x 3| 5, find f(1) f(5).
 - (a) 0

(b) -4

(c) 14

(d) -14

- (e) None of these
- 12. Determine the even function.

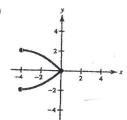
(a)
$$f(x) = \sin x$$

(b)
$$f(x) = \frac{x^3}{x^2 + 1}$$

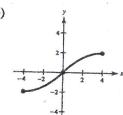
(c)
$$f(x) = 3x^4 + 5x^2 - 1$$

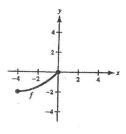
(d)
$$f(x) = \sqrt{x^3 + 1}$$

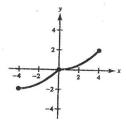
- 13. Find the point that lies on the line determined by the points (1, -3) and (-2, -4).
 - (a) (3, -2)


(b) (-1, -1)

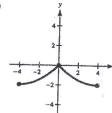
(c) (10, 0)

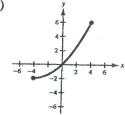

(d) (-4, 2)


- (e) (4, 2)
- 14. The domain of the function f shown in the figure is $-4 \le x \le 4$. Choose the complete graph of f if f is odd.



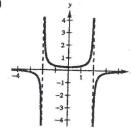
(b)



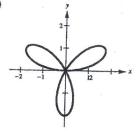

(c)

(d)

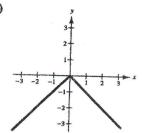
(e)

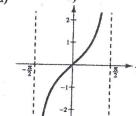


- 15. Describe the transformation needed to sketch the graph of $y = \frac{1}{x} + 2$ using the graph of $f(x) = \frac{1}{x}$.
 - (a) Shift f(x) two units to the right.
- (b) Shift f(x) two units to the left.


(c) Shift f(x) two units upward.

- (d) Shift f(x) two units downward.
- (e) Reflect f(x) about the x-axis.
- 16. Use the vertical line test to determine which of the following graphs does not represent y as a function of x.




(b)

(c)

(d)

(e) Both a and d

- 17. Let $f(x) = \begin{cases} x^2 5, & x < 2 \\ 3x + 1, & x \ge 2 \end{cases}$. Find f(1).
 - (a) -4

(c) 4

(d) 2

- (e) 0
- 18. The dollar value of a product in 1998 is \$78. The value of the product is expected to decrease \$5.75 per year for the next 5 years. Write a linear equation that gives the dollar value V of the product in terms of the year t. (Let t = 8 represent 1998.)

(a)
$$V = 78 - 5.75t$$

(b)
$$V = 78 + 5.75t$$

(c)
$$V = 78 + 5.75(t - 8)$$

(d)
$$V = 78 - 5.75(t - 8)$$
 (e) $V = 5.75 - 78(t - 8)$

(e)
$$V = 5.75 - 78(t - 8)$$

- 19. A business had annual retail sales of \$124,000 in 1993 and \$211,000 in 1996. Assuming that the annual increase in sales follows a linear pattern, predict the retail for 2001.
 - (a) \$356,000

(b) \$435,000

(c) \$646,000

(d) \$298,000

- (e) \$327,000
- 20. In order for a company to realize a profit in the manufacture and sale of a certain item, the revenue, R, for selling x items must be greater than the cost, C, of producing x items. If R = 69.99x and C = 59x + 850, for what values of x will this product return a profit?
 - (a) $x \ge 78$

(b) $x \ge 15$

(c) $x \ge 85$

(d) $x \ge 13$